Parallel Computing An MPI Case Study

Lena Kanellou, Manolis Ploumidis

ICS-FORTH

What is parallelism?

• Several processors collaborate to solve a problem, i.e. to execute a program

Why parallelism?

- Need for more and more performance and capacity
 - Scientific computing
 - Commercial computing
 - Computer graphics
- Exploit parallelism available in modern clusters supercomputers

Shared memory multiprocessors

- May contain up to hundreds of processors
- Processes communicate over memory

Message passing parallel machines

- Building block: full computing nodes
 - Processor
 - Memory
 - I/O controller
 - Network interface

Common SC/cluster paradigm

• Hybrid

How do we exploit all these resources?

- Hide machine/architecture details
- Programming models
 - Supported/tunned for each machine
- OpenMP
 - Shared memory multiprocessing architectures
- Message passing
 - Distributed memory architectures

What is MPI

- Message Passing Interface
 - A specification for creating message passing libraries
- Originally designed for distributed memory architectures
- Currently adapted to handling various communication substrates
 - Shared memory
 - Distributed memory
 - Hybrid

Communication primitives

- Point-to-point
 - Sender-receiver
- Collectives
 - One-to-all
 - All-to-one
 - All-to-all
- One sided primitives

Point-to-point Communications

Collective Communications

A parallelizable problem: Matrix multiplication

- Matrices occur when studying models with multiple variables
- In Biology, for example:
 - Allele frequencies mutation
 - Conformational states of molecules
 - Growth of a structured population
 - Meta-population modeling
 - Age-structured population

Matrix multiplication: the sequential case

Matrix multiplication: a possible parallelization

