
Graph Analytics with Spark

Polyvios Pratikakis

Institute of Computer Science
Foundation for Research and Technology–Hellas

EuroCC@Greece 2021

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 1 / 17



This talk

Spark at a glance

Graphs in Spark

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 2 / 17



Quick Introduction to Spark

Spark: MapReduce Analytics
I Cluster computing
I Runs in memory
I Easy to scale computation to many nodes
I Not Hadoop
I Program API in Python, Scala, Java, R
I Batch or interactive
I More recently: streams

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 3 / 17



MapReduce

A programming model
I A restriction on how to express computations
I With benefits

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 4 / 17



Motivation for MapReduce

Processing of large datasets
I Very large datasets split across datacenter nodes
I 1000s of nodes!
I Difficult to program the HPC way

F MPI: Message Passing Interface
F Who talks to whom, synchronization
F Data placement
F Fault tolerance
F Consistency
F A lot of very complex CS problems
F Data Scientists not to be exposed to these!

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 5 / 17



Old inspiration for MapReduce

Functional Programming to the rescue
I Lisp (1958): programming language for processing lists
I Garbage collection
I Map and Reduce operators

F Functional: no side-effects
F Computation depends on inputs, produces outputs
F Can be executed twice, same output

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 6 / 17



MapReduce Model

Programmer only provides Map and Reduce functions

Hidden framework to implement all else
I Data distribution, placement
I Scheduling
I Faults
I Moving code to data, data to code
I Synchronization, load balancing
I ...

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 7 / 17



MapReduce Model

Data is “lists”
I Not really, but big collections of data
I Distributed, partitioned (hidden)
I (Key, Value)

Map function
I Gets a (Key, Value)
I Returns new (Key, Value) pairs

F Not necessarily of the same type as input
F Can return multiple new pairs
F So, we don’t say “return”, but “emit”

Reduce function
I Gets a key and many values with that key in pairs emitted by map
I Returns a single result for that key

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 8 / 17



MapReduce at a glance

Image (c) University of Notre Dame

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 9 / 17



Spark RDDs

Spark uses RDDs to do MapReduce
I Abstraction of a distributed table
I Looks like a table partitioned across nodes

RDD operations create RDD with results
I Lazy, may not run immediately
I Helps a lot with scheduling
I coalescing for performance

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 10 / 17



Spark example

val lines = sc.textFile("data.txt")

val lineLengths = lines.map(s => s.length)

val totalLength = lineLengths.reduce((a, b) => a + b)

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 11 / 17



Spark GraphX

RDDs too low-level for graphs

Need something domain-specific

GraphX is a Spark library
I Provides abstract Graph data structure
I Ready graph operations
I Implements Bulk-Synchronous Parallel model

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 12 / 17



BSP

Bulk Synchronous Parallel
I Valiant, 1990

MapReduce for graphs
I Each superstep
I Apply “map” to nodes
I Send messages over edges
I Reduce messages received
I Update/return new graph state

As parallel as MapReduce

Can be implemented in MapReduce
I Pregel, Giraph, GraphLab, ...
I GraphX is Spark implementation

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 13 / 17



GraphX graph

class Graph[VD, ED] {

val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

...

}

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 14 / 17



GraphX operators

class Graph[VD, ED] {

// Change the partitioning heuristic ============

def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED]

...

// Iterative graph-parallel computation ==========

def pregel[A](

initialMsg: A,

maxIterations: Int,

activeDirection: EdgeDirection

)(vprog: (VertexId, VD, A) => VD,

sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId,A)],

mergeMsg: (A, A) => A)

: Graph[VD, ED]

// Basic graph algorithms ========================

def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double]

def connectedComponents(): Graph[VertexId, ED]

def triangleCount(): Graph[Int, ED]

def stronglyConnectedComponents(numIter: Int): Graph[VertexId, ED]

}

https://spark.apache.org/docs/latest/graphx-programming-guide.html#summary-list-of-operators

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 15 / 17

https://spark.apache.org/docs/latest/graphx-programming-guide.html#summary-list-of-operators


GraphX example

val g: Graph(String, Int) = Graph(nodes, edges)

val pr = g.pageRank(0.001).vertices

def max(a: (VertexId, Int), b: (VertexId, Int)): (VertexId, Int) = {

if (a._2 > b._2) a else b

}

val maxInDegree = g.inDegrees.reduce(max)

val maxOutDegree = g.outDegrees.reduce(max)

val maxDegree = g.degrees.reduce(max)

pr.join(nodes).sortBy(_._2._1, ascending=False).foreach(println)

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 16 / 17



Conclusions

Spark analytics for scale

GraphX integrates well with Spark ML pipelines
I E.g., TF-IDF to mine content-similarity graph, detect communities in

graph
I In one single pipeline, one language, cluster scalable

May require fine-tuning for performance, domain specific, data
dependent

Good way to scale to large graphs

Polyvios Pratikakis (FORTH-ICS) Graph Analytics EuroCC 17 / 17


	Introduction
	Introduction to Spark
	Spark MapReduce
	GraphX

